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NUMBERS AND INVESTIGATION Paul Zeitz, zeitzp@usfca.edu

1 Know your sequences!. You already know about odds and evens, but you need to have, at
the very least, passive familiarity with as many other sequences as possible. Here are a few.

• The triangular numbers are the sums of consecutive integers, starting with 1. The
first few are 1,3,6,10,15,21,28,36,45,55,66,78,91,105,120, . . . .

• The squares are 1,4,9,16,25,26,49,64,81,100,121,144,169,196,225 . . . .

• The powers of two are the numbers of the form 2k for non-negative integers k. The
first few terms are 1,2,4,8,16,32,64,128,256,512,1024,2048, . . . , since 20 = 1.

• The Fibonacci numbers fn are defined by f1 = 1, f2 = 1 and fn = fn�1 + fn�2 for
n > 1. For example, f3 = 2, f4 = 3, f5 = 5, f6 = 8. The first few terms are

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, . . . .

2 Investigating these sequences. Try to ask questions that involve one or more sequence, and
then investigate them. Here are a few suggestions.

• Is there a relationship between odd numbers and squares?
Solution: Indeed, this picture shows that the nth square is the sum of the first n odd
numbers, explicitly demonstrating that 1+3+5+7 = 42.

• Are square numbers ever triangular numbers as well?
Solution: We didn’t really look into this, other than observe that t1 = 1 and t8 = 36.
A computer or calculator will allow you to discover far more triangular numbers that
are also squares; it is a fascinating exploration that leads to interesting patterns that
amazingly, involve

p
2.

• Make a list of triangular numbers; then look at what happens when you multiply each
number by 8 and then add 1.
Solution: Proof by picture shows that if T = 1+ 2+ 3, then 8 copies of T can be
arranged in a ”pinwheel” pattern that makes a perfect square minus 1 (the red dot).

1
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3 Adding and multiplying. Here’s a fun and simple activity: Write a multiplication table, say
from 1⇥ 1 up to 10⇥ 10, and figure out how to add up the entries of the table. Without
doing a lot of work!

Solution: A little experimenting with smaller tables gets us the nice answer of t
2
n

for an
n⇥n table. To see why, look at the multiplication table tor n = 3.

1 2 3
1 1 2 3
2 2 4 6
3 3 6 9

The sum of the entries is

(1+2+3)+2(1+2+3)+3(1+2+3) = (1+2+3)(1+2+3).

4 A number is called trapezoidal if it can be expressed as a sum of two or more consecutive
positive integers. For example, 7 = 3+4 and 10 = 1+2+3+4 and 12 = 3+4+5 are all
trapezoidal. Investigate, generate questions, come up with conjectures.

Solution: The main thing that we determined is that a number is trapezoidal if and only if
it is NOT a power of 2. In other words, if it does not have an odd factor. Thus we need to
show two things:

1. If a number is trapezoidal, it must have an odd factor (besides 1, of course).

2. If a number has an odd factor (besides 1) it is trapezoidal.

To prove #1, we observe that if a number is trapezoidal with an odd number of addends,
then it automatically has an odd factor. For example, the 5-addend sum 10+ 11+ 12+
13+14+15 = 5 ·12. This is because of the ”balance-beam” principle, that the numbers all
balance around the center point of 12.

But what if there are an even number of addends? Then we use the fact that the first and
last numbers are of different parity, so their sum is odd, and we can collect several copies
of this odd number. For example, consider the 8-addend sum

16+17+18+19+20+21+22+23.
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There is no central balance point, but instead we just observe that the entire sum is equal to

(16+23)+(17+22)+(18+21)+(19+20) = 4 ·39,

a multiple of the odd number 39. Clearly this method works for any even-addend trape-
zoidal number.

Thus, we know that trapezoidal numbers have odd factors, so they cannot be powers of two.
But we haven’t shown that ALL numbers with odd factors can be written ”trapezoidally,”
which is what #2 asserts So let’s prove that.

Suppose we have a number which has an odd factor, say 21 = 3 ·7. We can write

21 = 7+7+7 = 6+7+8,

where we used the ”balance-beam” principle.

But this method doesn’t always work smoothly. Suppose we have 22 = 2 ·11. We write

22 = 2+2+2+2+2+2+2+2+2+2+2,

and the balance-beam method yields

22 = (�3)+(�2)+(�1)+0+1+2+3+4+5+6+7,

which is a sum of 11 consecutive integers, but of course they are not all positive. But so
what! Just let the negatives cancel out their positive sisters, and we get the sum

22 = 4+5+6+7,

so it is trapezoidal.

5 Fibonacci investigations. Here are just a few suggestions.

• Investigate parity (odd or even), divisibility by 3, divisibility by 5, perfect squares,
etc. for the Fibonacci numbers.

• Try adding the Fibonacci numbers.

• Try adding squares of Fibonacci numbers.

6 Added during the session. Given an n⇥n grid, count the number of squares possible. Call
this number Sn. Also count the number of rectangles possible. Call this Rn. For example,
you should be able to verify that S1 = R1 = 1, and S2 = 5,R2 = 9, and S3 = 14,R3 = 36.
Can you find formulas for Sn and Rn?

Solution: Let’s try to compute R3 by drawing a 3⇥ 3 grid, where we label each grid
square with the number of rectangles possible that have that grid square as its upper-left
corner.

9 6 3
6 4 2
3 2 1



MitM 2023 Paul Zeitz, zeitzp@usfca.edu Monday 4

Notice that for each square we label, we are merely counting the number of squares that
there are to the right and below our square (including our square itself), since any of the
other squares to the right and below can serve as the lower-right corner of the rectangle.
We are exactly doing the multiplication table problem (problem 3), so the answer is t3, and
in general we have deduced that

Rn = t
2
n
.

Let’s now do the same analysis for S3. We get the following grid.

3 2 1
2 2 1
1 1 1

for a total of 14. Likewise, the grid for S4 is

4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

Let’s think recursively. How do we get from S3 to S4? We merely increase every value of
the S3 grid by 1, and then add a boundary layer of 1s on the right and bottom. Since we are
interested in the sum of the grid values, we are just adding a 4⇥4 grid consisting of all 1s
to the S3 grid sum. In other words,

S4 = S3 +42.

Since S1 = 1 = 12, we have deduced that in general,

Sn = 12 +22 +32 + · · ·+n
2.

7 The difference game. Start by labeling the vertices of a square with numbers. Then write
the difference of the values at two adjacent vertices on the midpoint of the line joining
them; this produces four new values at the vertices of a smaller square. Keep repeating
this process, generating smaller and smaller squares until the process ends. In the example
below, we started with the values 6,8,7,12 (shown in larger font) which generated the
values 2,1,5,6, then 4,1,4,1. The final square shown has all vertices equal to 3; clearly
the next square (and all subsequent squares) will have only zeros at each vertex.



MitM 2023 Paul Zeitz, zeitzp@usfca.edu Monday 5

Investigate, generate questions, come up with conjectures.

Solution: There are two big questions (at least). The first is whether you always end up
with zeros eventually, and the second is whether you can hold out for an arbitrary length of
time.

The answers are YES to both questions (provided you start with positive integers). To see
why you eventually get only zeros, we will verify two simple observations.

• The maximum of the four values NEVER goes up; it either stays the same or
decreases. This is pretty obvious. However, this is not enough to force the values to
all become zero, since perhaps there could be some ”oscillation.” We need the next
observation.

• Eventually all the values will be even. This is not obvious, but there are only 6 differ-
ent parity cases to try, using 0 for even and 1 for odd: 0000,1000,1100,1010,1110,1111.
With each case, we end up with all evens (all 0s) in at most 4 turns.

Thus, no matter what numbers you get, eventually, you will end up with a square whose
values are all even. Call the values 2a,2b,2c,2d. Now, when you continue the process,
everything is multiplied by this factor of 2, and you can visualize it as two identical squares
playing the difference game. At some point, both of those squares will have all even values.
But it was really just one square, so putting the factor of 2 back, we now have all values
being multiples of 4.

This process will continue indefinitely, which forces the values to eventually be zeros, since
no positive integer can have an arbitrarily high power of two dividing it!

Now that we know we will eventually get all zeros, we need to find a way to hold off that
fate as long as possible. We can design a starting square that will take at least N turns to
zero out, for any N. The secret is ”tribonacci numbers,” the sequence 1,1,1,3,5,9,17, . . .,
where the first three terms are 1 and each subsequent term is the sum of the three preceding
terms.

To see how this works, imagine that we put the values t13, t12, t11, t10 on the vertices of a
square (clockwise, in that order), where tn is the nthe tribonacci number. After one turn,
the vertices of the new square are

t13 � t12, t12 � t11, t11 � t10, t13 � t10.

Using the definition of tribonacci numbers, we see that

t13 � t12 = (t12 + t11 + t10)� t12 = t11 + t10.

Likewise, t12� t11 = t10+ t9 and t11� t10 = t9+ t8. The last difference is a slightly different
pattern (since the indices differ by 3 instead of 1), but the magic of tribonacci yields

t13 � t10 = (t12 + t11 + t10)� t10 = t12 + t11.

It doesn’t matter which vertex is ”first,” as long as we go in order. So observe that the
values of this new square, going clockwise, are

t12 + t11, t11 + t10, t10 + t9, t9 + t8.
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Now if we use the ”two squares” idea, we see that this new square can really be thought of
as one square with vertices of t12, t11, t10, t9, and the other, with corresponding vertices of
t11, t10, t9, t8. Well, we know what happens when we take differences; these are just squares
with consecutive tribonacci values (only shifted backwards a bit).

You can see the pattern. If we let Sn denote the square whose values are the consecutive
tribonacci numbers tn, tn�1, tn�2, tn�3, we see that after one turn, Sn becomes ”Sn�1+Sn�2,”
and after k turns, we will have a ”sum” of 2k tribonacci squares. The values of these
tribonacci squares stay non-zero and non-constant until you hit S4; after four turns that
zeros out.

Notice that this ”multiple squares” idea requires that the values of the squares be monotonic
in the same direction; this allows us to couple or uncouple squares without interference. So
at the very least, we can be assured of getting at least n�4 turns if we start with Sn.

8 Pizza slicing. Imagine a giant pizza. For each n, what is the maximum number of pieces
you can get if you slice this pizza with straight line cuts? The lines are infinite; they are not
line segments.

That’s the warm up. Now investigate a slight modification that makes the problem even
more interesting: Remove the words “the maximum” above, and replace it with “are the
possible.” For example, if n = 3, the maximum number of pieces will be 7 (verify!) but it is
possible to get fewer. If all three lines coincide, you will get just 2 pieces. If all three lines
are parallel, you will get 4 pieces. If two are parallel, and one is not, you get 6.

Solution: The answer to the warm up is a classic problem; for n lines it is just 1 more than
the nth triangular number. I have no idea about the more general problem. It is fun and rich
and there are plenty of partial solutions possible.


