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Problems with Solutions

1 A 15-inch-long stick has four marks on it, dividing it into five segments of leng3 4, and
5 inches (although not neccessarily in that order) to make a “ruler.” Here is an example.

2 3" 5 I 4
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Using this ruler, you could measure 8 inches (between the niasd D) and 11 inches
(between the end of the rulerAtand the mark aE), but there’s no way you could measure 12
inches.

Prove that it is impossible to place the four marks on the stick such that the five segments
have length 12,3, 4, and 5 inches, and such that every integer distance from 1 inch through 15
inches could be measured.

Solution 1. In order to measure 14 inches, one mark must be 1 inch from an end of the ruler.
Likewise, in order to measure 13 inches, there must be another mark that is 2 inches from an
end of the ruler. Without loss of generality, suppose the leftmost mark is 1 inch from the end,
and the rightmost mark is 2 inches from the other end.

Next, we observe that the second mark from the left must be 5 inches from the first, or else it
would be impossible to measure 6 inches.

At this point, there are only two cases to consider: either the distances between marks are, in
order,

1,5,4,3,2,
or the distances are

1,5,3,4,2.
In the first case, we cannot measure 8 inches, and in the second case, we cannot measure 10
inches. We conclude that it is impossible. [ ]

Solution 2: In order to make a measurement, you must choose a pair of marks, where the two
endpoints are included. Since there are 6 marks, that means that we can measure at most 15
different segments (& 5/2). Therefore a ruler that can measure every length from 1” through

15” must have exactly one way of measuring each length.

If the 1” segment is next to the 2”, 3", or 4” segments, then that would make a second way of
measuring 3", 47, or 5”. Therefore, the 1” segment must be next to the 5” segment only: the
1”7 is on the end, next to the 5”. Now, if the 2” segment is next to the 3” or 4” segments, then
that would make a second way of measuring 5” or 6”. So the 2” segment is also next to the 5”



segment only. But that leaves nowhere to put the 3” and 4” segments. [ ]

Solution 3: Let a,b,c,d, e be the segments in order (equalling13,4,5, but not necessarily
in that order). As above, there are only 15 possible segments that can be measured. The sum
of all 15 segments (in inches) is

14+2+---+15=15x 16/2.

But this is also equal toéb+ 8b+ 9c+ 8d + 5e.

Hence
5a+8b+9c+8d+5e=15x16/2=15x 8.

Now note that 15=a+b-+c+d-+e, so
5a+8b+9c+8d+5e=8a+8b+8c+8d+8e.

Subtract &+ 8b+ 8c+ 8d + 5e from both sides to gat = 3a+ 3e.
Buta-+eis at least 3 and is at most 5, a contradiction. m

The points of the plane are colored in black and white so that whenever three vertices of a
parallelogram are the same color, the fourth vertex is that color, too. Prove that all the points
of the plane are the same color.

Solution: Suppose not. LeA be a white point an® a black point. Their midpoint is one

of the two colors; without loss of generality suppd3és black. Now pick any poinD not
collinear withA, B,C, and construck so thatCADE is a parallelogram. ID, E are both white,
thenCADE has three white vertices and one black vertex, impossible; if they are both black,
thenCADE has three black vertices and one white vertex, impossibl® &udE are opposite
colors.

But BCDE is also a parallelogram, sin&C = AC = DE and linesBC, DE are parallel. How-
ever,BCDE it has three black vertices and one white vertex. Thus we have a contradimtion.

REMARK: Many students wrote a flawed solution that went something like this: If there are
three non-collinear black points, we can build a black parallelogram. Then we can build a new
one at a different angle, etc. and thus “sweep” the entire plane with black points. This idea
Is good, but it doesn't quite work, because the plane contamsuntablymany points. Itis
always possible to put white points between black points. The idea of building up parallelo-
grams gives one infinitely many black points, but infinity is not quite enough! There are plenty
of holes where white points can lurk.

In AABC, D andE are two points on segmeBC such thaBD = CE and Z/BAD = Z/CAE.
Prove thatAABCis isosceles.



]
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Solution 1: Translate/AABDA horizontally until its sideBD coincides with sideEC, and la-
bel the image of poinA by A’. We now have two triangleAECA and AECA which share
the same baséC, have the same height (equal to the height of the original AABC), and
equal anglesy EACandZEAC. The last implies that there is a cirdtgpassing through points
E,C,A andA. The equal heights condition implies tHa€ is parallel toAA’; yet the only
trapezoids inscribed in a circle are isosceles. Therefo@®XA is isosceles WithAE = A'C.
Since the diagonals of an isosceles trapezoid are efual= CA Translating back to the
original AABC, this means thaBA= CAand AABCis isosceles. [ ]

Solution 2: Without loss of generality, assume that the poiat®,E andC are arranged in
this order on the lin®C; otherwise, switch point® andE in the remainder of the solution.

Suppose that\ABC s not isosceles. Without loss of generality, BA < CA. Let AL denote
the angle bisector of BAC, whereL lies on sideBC. Reflect/AABL acrossAL and denote by
B’ andD’ the images oB andD, respectively. SincB’A= BA < CA, B' is inside sideCA, and

this forces the whole segmebB’ to be insideALCA; in particular,D’ is an interior point of
segmeniAE.

Because of the reflectiod\AD'B’ has equal area asADB. In its turn, AADB has the equal
area as\AEC (they have equal bases and heights). This impliesAt#d’B’ and AAEChave
equal area, which contradicts the fact that one triangle is properly included in the other.

We conclude that our supposition is false. Thereféigé= AC and our triangle is isosceles as
desired. -



Solution 3: Let /BAD= ZCAE = 6. In the end triangles)ABD and AACE, andAABC, by

the Law of Sines a m n q p

sin@ _ sinB_ sinC and sinB _ sinC’

Thenmp= ng Supposep # q. Then, without loss of generalityp < q, which implies
np<ng=mpandn < m. Butif p< qthen/C < /B which implies/AED= /ZC+06 <
/B+6=/ADE andm< n.

This is a contradiction, sp = qgand AABCIs isosceles. O

Solution 4: Let /BAD = ZCAE = 6. AABD and AACE have equal areas since they have
equal basesHD = EC) and the same altitude fro Then%pmsine = %qnsine which im-
pliesmp= ng. Now use the same contradiction as in the above solution. (]

Let N be the number of ordered pairg y) of integers such that
X2 + xy+y? < 2007
Remember, integers may be positive, negative, or zero!

(a) Prove thaN is odd.
(b) Prove thal is not divisible by 3.

Solution:

(@) If (x,y) is a pair of integers that satisfies the inequality, ther, —y) is also such a pair,
since

(=32 + () (=Y) + (=y)* =X +xy+ Y.
So we can match up pairs of solutions to the inequalityy) < (—X, —y). Every solution

will be paired with a different solution, except for the one remaining soluytiof) which
is paired with itself. This shows that the number of solutions is odd.

(b) This is similar to the previous part, except now that we have to arrange the nonzero
solutions into triples instead of pairs. (k,y) is a solution to the inequality, then so is
(—=x—Y,X), since

(—X—Y)? + (=X — Y)X+ X2 = X2 + Xy + Y.

Applying this transformation three times in succession gives the cycle

(XY) = (=X=¥,X) = (¥, =X=Y) = (X,Y),



so we can unambiguously arrange the solutions into cycles of three, of thé (fryn, (—x—

Y, X), (Y, —X—Y)}. Now, if any two solutions in the same cycle are equal, then the third
is also equal to them, so every cycle contains either three distinct solutions or just one
solution. If a cycle contains just one solutiorn y), thenx =y andy = —x—y gives

x =y = 0. Therefore, the solutio(D,0) forms a cycle by itself, and every other cycle
consists of three different solutions, which means that the total number of solutions has
remainder 1 when divided by 3.

NOTE: Itis easier to see what is going on if we thinkxodndy as picking out a point in a non-
rectangular coordinate system; then the nunibes just the number of points of the triangular
lattice inside the circle with cent¢6,0) and radius,/2007. The first transformatiofx,y) —
(—x, —y) corresponds to a 18@otation of the lattice; the transformatigr,y) — (—Xx—,X)

is a 120 rotation.

Two sequences of positive integexs,x2, X3, ... andyi, y2,Ys, ..., are given, such that

Ynt+1/Xn+1 > Yn/Xn

for eachn > 1. Prove that there are infinitely many valuesxauch that,, > /n.

Solution: Suppose the statement is false. So there are only finitely many values for which
Yn > +/N; suppose there aif®; such values. Letn be the largest integer such that/'y, > m

for all n (this is possible since every/y, > 0; note that it may be the case thmt= 0). We
havexn/yn < m+ 1 for somen, sayn = Ry, and since the sequente,/yn) is decreasing, we
then getx,/yn < m+1 for alln > Ry. LettingR= R; + Ry, we obtain

Yn < /N and  m<Xp/yn<m+1

for all n, with at mostR possible exceptions.

Now fix any positive integeN. The pairs of positive integetsn, yn) for n < N2 are all distinct,
since the corresponding valuesgfx, are strictly increasing; and except for at mBsif them,
the remaining ones all satisfy

Yn<vN<N

and
Myh < Xn < Myh + Yn.

So we haveN — 1 possible values foy, (hamely 12,...,N —1), and for each such value, we
havey, choices forx, (namelymy,, my,+1,....,myy+Yyn—1), giving 1+2+---+(N—1) =
N(N —1)/2 possible pairs obtained in this way. Hence, counting all the gajxsyn) for
n < N2, we have

NZ—1-R<N(N-1)/2.

But sinceRis fixed, clearly this inequality will become false for large enolghAt this point
we have a contradiction, and the problem is solved. [ ]

Here is an informal explanation of the above argument, using a geometric interpretation of the
problem. View(xn,yn) as a lattice point in quadrant | of the coordinate plane, and define



Yn/Xn. Thenmy is the slope of the line joiningx,,yn) and the sequendes,y), (X2,¥2),... is
a sequence of lattice points in quadrant | wsthictly increasingslopesmy, mp, ...

Draw rays passing through the origin with slopes 12,1/3,1/4,1/5. ... In the picture below,

we show the first four of this infinite collection of rays. These rays partition quadrant | into
infinitely many “wedges.” Sincey, is an increasing sequence, there will be only finitely many
lattice points in all of the wedges but one, and in that “final” wedge, infinitely many lattice
points will accumulate. For example, suppose that for at leashpwe havem, > 1/2, and
suppose that for no do we haveamn, > 1. Then there will be infinitely many lattice points in
the wedge bounded lyy= x andy = x/2, finitely many lattice points in the wedges to the right,
and no lattice points in the wedge to the left (the one bounded by-&xés andy = x).

To keep things concrete, let's suppose that there are only 200 points to the right of this final
wedge. Next, suppose further that there were only finitely masych thaty, > /n. For
example, suppose the largest suctvasn = 1000. These 1200 points are “exceptional,” in
that 200 of them are “too far to the right” and 1000 of them are “too high.” All of the rest of
the points are well-behaved (they lie in the final wedge and v/k).

Pick a large integeN (larger than 1200). Consider the triangular region in the final wedge that
lies below the liney = N (shaded in the figure below).

A

\4

Now look at the firstN2 — 1 lattice points in the sequence. Of these points, at most 1200 are
exceptional, and the rest of the points must lie in the shaded triangular region (SiR¢§uf
is a point, therk < N2 andy, < v’k < N if the point is not exceptional).

Now we can produce a contradiction: the triangular region has hiigimid basé8C = N, and
hence are&l?/2. Without worrying about boundary points, it is clear that this region cannot
contain more thaiN?/2 lattice points. However, all but 1200 of the fitd€ — 1 lattice points

in the sequence must lie in this region. We can chddbse be arbitrarily large, but the value
of 1200 will not change. So eventually, we can pick a large enduigb that there is simply

no room to place the unexceptional lattice points, and we are done.

Notice that it doesn’t matter which wedge is the final wedge. The area will alwaixg 12

There were three crucial ideas here: thinking about slopes, restricting the lattice points to a
single wedge, and observing that the area of a trianlgfg'2) is simply too small to put a
square’s worth of lattice point$\é — 1200) into!



