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Problems with Solutions

1 A 15-inch-long stick has four marks on it, dividing it into five segments of length 1,2,3,4, and
5 inches (although not neccessarily in that order) to make a “ruler.” Here is an example.
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Using this ruler, you could measure 8 inches (between the marksB and D) and 11 inches
(between the end of the ruler atA and the mark atE), but there’s no way you could measure 12
inches.

Prove that it is impossible to place the four marks on the stick such that the five segments
have length 1,2,3,4, and 5 inches, and such that every integer distance from 1 inch through 15
inches could be measured.

Solution 1: In order to measure 14 inches, one mark must be 1 inch from an end of the ruler.
Likewise, in order to measure 13 inches, there must be another mark that is 2 inches from an
end of the ruler. Without loss of generality, suppose the leftmost mark is 1 inch from the end,
and the rightmost mark is 2 inches from the other end.

Next, we observe that the second mark from the left must be 5 inches from the first, or else it
would be impossible to measure 6 inches.

At this point, there are only two cases to consider: either the distances between marks are, in
order,

1,5,4,3,2;

or the distances are
1,5,3,4,2.

In the first case, we cannot measure 8 inches, and in the second case, we cannot measure 10
inches. We conclude that it is impossible.

Solution 2: In order to make a measurement, you must choose a pair of marks, where the two
endpoints are included. Since there are 6 marks, that means that we can measure at most 15
different segments (6×5/2). Therefore a ruler that can measure every length from 1” through
15” must have exactly one way of measuring each length.

If the 1” segment is next to the 2”, 3”, or 4” segments, then that would make a second way of
measuring 3”, 4”, or 5”. Therefore, the 1” segment must be next to the 5” segment only: the
1” is on the end, next to the 5”. Now, if the 2” segment is next to the 3” or 4” segments, then
that would make a second way of measuring 5” or 6”. So the 2” segment is also next to the 5”



segment only. But that leaves nowhere to put the 3” and 4” segments.

Solution 3: Let a,b,c,d,e be the segments in order (equalling 1,2,3,4,5, but not necessarily
in that order). As above, there are only 15 possible segments that can be measured. The sum
of all 15 segments (in inches) is

1+2+ · · ·+15= 15×16/2.

But this is also equal to 5a+8b+9c+8d+5e.

Hence
5a+8b+9c+8d+5e= 15×16/2 = 15×8.

Now note that 15= a+b+c+d+e, so

5a+8b+9c+8d+5e= 8a+8b+8c+8d+8e.

Subtract 5a+8b+8c+8d+5e from both sides to getc = 3a+3e.

But a+e is at least 3 andc is at most 5, a contradiction.

2 The points of the plane are colored in black and white so that whenever three vertices of a
parallelogram are the same color, the fourth vertex is that color, too. Prove that all the points
of the plane are the same color.

Solution: Suppose not. LetA be a white point andB a black point. Their midpointC is one
of the two colors; without loss of generality supposeC is black. Now pick any pointD not
collinear withA,B,C, and constructE so thatCADE is a parallelogram. IfD,E are both white,
thenCADE has three white vertices and one black vertex, impossible; if they are both black,
thenCADEhas three black vertices and one white vertex, impossible. SoD andE are opposite
colors.

But BCDE is also a parallelogram, sinceBC= AC= DE and linesBC,DE are parallel. How-
ever,BCDE it has three black vertices and one white vertex. Thus we have a contradiction.

REMARK: Many students wrote a flawed solution that went something like this: If there are
three non-collinear black points, we can build a black parallelogram. Then we can build a new
one at a different angle, etc. and thus “sweep” the entire plane with black points. This idea
is good, but it doesn’t quite work, because the plane containsuncountablymany points. It is
always possible to put white points between black points. The idea of building up parallelo-
grams gives one infinitely many black points, but infinity is not quite enough! There are plenty
of holes where white points can lurk.

3 In 4ABC, D andE are two points on segmentBC such thatBD = CE and∠BAD= ∠CAE.
Prove that4ABC is isosceles.
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Solution 1: Translate4BDA horizontally until its sideBD coincides with sideEC, and la-
bel the image of pointA by A′. We now have two triangles4ECA and4ECA′ which share
the same baseEC, have the same height (equal to the heightAH of the original4ABC), and
equal angles∠EACand∠EA′C. The last implies that there is a circlek passing through points
E,C,A′ andA. The equal heights condition implies thatBC is parallel toAA′; yet the only
trapezoids inscribed in a circle are isosceles. Therefore,ECA′A is isosceles withAE = A′C.
Since the diagonals of an isosceles trapezoid are equal,EA′ = CA. Translating back to the
original4ABC, this means thatBA= CAand4ABC is isosceles.
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Solution 2: Without loss of generality, assume that the pointsB,D,E andC are arranged in

this order on the line
↔
BC; otherwise, switch pointsD andE in the remainder of the solution.

Suppose that4ABC is not isosceles. Without loss of generality, letBA< CA. Let AL denote
the angle bisector of∠BAC, whereL lies on sideBC. Reflect4ABL acrossAL and denote by
B′ andD′ the images ofB andD, respectively. SinceB′A = BA< CA, B′ is inside sideCA, and
this forces the whole segmentLB′ to be inside4LCA; in particular,D′ is an interior point of
segmentAE.

Because of the reflection,4AD′B′ has equal area as4ADB. In its turn,4ADB has the equal
area as4AEC(they have equal bases and heights). This implies that4AD′B′ and4AEChave
equal area, which contradicts the fact that one triangle is properly included in the other.

We conclude that our supposition is false. Therefore,AB= AC and our triangle is isosceles as
desired.
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Solution 3: Let ∠BAD= ∠CAE= θ. In the end triangles,4ABDand4ACE, and4ABC, by
the Law of Sines a

sinθ
=

m
sinB

=
n

sinC
and

q
sinB

=
p

sinC
.

Then mp= nq. Supposep 6= q. Then, without loss of generality,p < q, which implies
np < nq = mp andn < m. But if p < q then∠C < ∠B which implies∠AED = ∠C+ θ <
∠B+θ = ∠ADE andm< n.
This is a contradiction, sop = q and4ABC is isosceles. �

Solution 4: Let ∠BAD = ∠CAE = θ. 4ABD and4ACE have equal areas since they have
equal bases (BD = EC) and the same altitude fromA. Then 1

2 pmsinθ = 1
2qnsinθ which im-

pliesmp= nq. Now use the same contradiction as in the above solution.

4 Let N be the number of ordered pairs(x,y) of integers such that

x2 +xy+y2≤ 2007.

Remember, integers may be positive, negative, or zero!

(a) Prove thatN is odd.

(b) Prove thatN is not divisible by 3.

Solution:

(a) If (x,y) is a pair of integers that satisfies the inequality, then(−x,−y) is also such a pair,
since

(−x)2 +(−x)(−y)+(−y)2 = x2 +xy+y2.

So we can match up pairs of solutions to the inequality,(x,y)↔ (−x,−y). Every solution
will be paired with a different solution, except for the one remaining solution(0,0) which
is paired with itself. This shows that the number of solutions is odd.

(b) This is similar to the previous part, except now that we have to arrange the nonzero
solutions into triples instead of pairs. If(x,y) is a solution to the inequality, then so is
(−x−y,x), since

(−x−y)2 +(−x−y)x+x2 = x2 +xy+y2.

Applying this transformation three times in succession gives the cycle

(x,y)→ (−x−y,x)→ (y,−x−y)→ (x,y),



so we can unambiguously arrange the solutions into cycles of three, of the form{(x,y),(−x−
y,x),(y,−x− y)}. Now, if any two solutions in the same cycle are equal, then the third
is also equal to them, so every cycle contains either three distinct solutions or just one
solution. If a cycle contains just one solution(x,y), thenx = y andy = −x− y gives
x = y = 0. Therefore, the solution(0,0) forms a cycle by itself, and every other cycle
consists of three different solutions, which means that the total number of solutions has
remainder 1 when divided by 3.

NOTE: It is easier to see what is going on if we think ofx andy as picking out a point in a non-
rectangular coordinate system; then the numberN is just the number of points of the triangular
lattice inside the circle with center(0,0) and radius

√
2007. The first transformation(x,y) 7→

(−x,−y) corresponds to a 180◦ rotation of the lattice; the transformation(x,y) 7→ (−x− y,x)
is a 120◦ rotation.

5 Two sequences of positive integers,x1,x2,x3, . . . andy1,y2,y3, . . ., are given, such that

yn+1/xn+1 > yn/xn

for eachn≥ 1. Prove that there are infinitely many values ofn such thatyn >
√

n.

Solution: Suppose the statement is false. So there are only finitely many values for which
yn >

√
n; suppose there areR1 such values. Letm be the largest integer such thatxn/yn ≥ m

for all n (this is possible since everyxn/yn > 0; note that it may be the case thatm= 0). We
havexn/yn < m+1 for somen, sayn = R2, and since the sequence(xn/yn) is decreasing, we
then getxn/yn < m+1 for all n≥ R2. LettingR= R1 +R2, we obtain

yn≤
√

n and m≤ xn/yn < m+1

for all n, with at mostRpossible exceptions.

Now fix any positive integerN. The pairs of positive integers(xn,yn) for n< N2 are all distinct,
since the corresponding values ofyn/xn are strictly increasing; and except for at mostRof them,
the remaining ones all satisfy

yn≤
√

n < N

and
myn≤ xn < myn +yn.

So we haveN−1 possible values foryn (namely 1,2, . . . ,N−1), and for each such value, we
haveyn choices forxn (namelymyn,myn +1, . . . ,myn +yn−1), giving 1+2+ · · ·+(N−1) =
N(N− 1)/2 possible pairs obtained in this way. Hence, counting all the pairs(xn,yn) for
n < N2, we have

N2−1−R≤ N(N−1)/2.

But sinceR is fixed, clearly this inequality will become false for large enoughN. At this point
we have a contradiction, and the problem is solved.

Here is an informal explanation of the above argument, using a geometric interpretation of the
problem. View(xn,yn) as a lattice point in quadrant I of the coordinate plane, and definemn =



yn/xn. Thenmn is the slope of the line joining(xn,yn) and the sequence(x1,y1),(x2,y2), . . . is
a sequence of lattice points in quadrant I withstrictly increasingslopesm1,m2, . . .

Draw rays passing through the origin with slopes 1, 1/2,1/3,1/4,1/5. . .. In the picture below,
we show the first four of this infinite collection of rays. These rays partition quadrant I into
infinitely many “wedges.” Sincemn is an increasing sequence, there will be only finitely many
lattice points in all of the wedges but one, and in that “final” wedge, infinitely many lattice
points will accumulate. For example, suppose that for at least onen, we havemn > 1/2, and
suppose that for non do we havemn > 1. Then there will be infinitely many lattice points in
the wedge bounded byy= x andy= x/2, finitely many lattice points in the wedges to the right,
and no lattice points in the wedge to the left (the one bounded by they-axis andy = x).

To keep things concrete, let’s suppose that there are only 200 points to the right of this final
wedge. Next, suppose further that there were only finitely manyn such thatyn >

√
n. For

example, suppose the largest suchn wasn = 1000. These 1200 points are “exceptional,” in
that 200 of them are “too far to the right” and 1000 of them are “too high.” All of the rest of
the points are well-behaved (they lie in the final wedge andyk ≤

√
k).

Pick a large integerN (larger than 1200). Consider the triangular region in the final wedge that
lies below the liney = N (shaded in the figure below).

y = x
y = x/2

CBy = N

Now look at the firstN2−1 lattice points in the sequence. Of these points, at most 1200 are
exceptional, and the rest of the points must lie in the shaded triangular region (since if(xk,yk)
is a point, thenk < N2 andyk <

√
k < N if the point is not exceptional).

Now we can produce a contradiction: the triangular region has heightN and baseBC= N, and
hence areaN2/2. Without worrying about boundary points, it is clear that this region cannot
contain more thanN2/2 lattice points. However, all but 1200 of the firstN2−1 lattice points
in the sequence must lie in this region. We can chooseN to be arbitrarily large, but the value
of 1200 will not change. So eventually, we can pick a large enoughN so that there is simply
no room to place the unexceptional lattice points, and we are done.

Notice that it doesn’t matter which wedge is the final wedge. The area will always beN2/2.
There were three crucial ideas here: thinking about slopes, restricting the lattice points to a
single wedge, and observing that the area of a triangle (N2/2) is simply too small to put a
square’s worth of lattice points (N2−1200) into!


