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Solutions to BAMO-8 and BAMO-12 Problems

1 How many different sets of three points in this equilateral triangular grid are the vertices of an equilateral triangle?
Justify your answer.

Solution:

Call the distance between two adjacent dots on the same row 1 unit. Call an equilateral triangle size x if each of
its sides are x units long. So the smallest triangle that can be drawn on the grid is size 1, and the largest triangle
has size 4.
It is easy to see that in this grid there are only a few possible distances between pairs of points: 1,2,3,4,

√
3,
√

7,
2
√

3, and
√

13, so every equilateral triangle that fits in the grid must have its sides equal to one of these lengths.
First, consider triangles with one side horizontal. They can point up or down, and the figure on the left above
illustrates a size 1 triangle pointing down and a size 2 triangle pointing up. Each such triangle is completely
determined by its uppermost or lowermost point. For upward-pointing triangles there are 4+3+2+1 = 10 size
1 triangles, 3+2+1 = 6 size 2 triangles, 2+1 = 3 size 3 triangles, and 1 size 4 triangle, for a total of 20 upward-
pointing triangles. Next, consider triangles with one side horizontal pointing down. There are 3+2 +1 = 6 size
1 triangles and 1 size 2 triangle of this type, for a total of 7 such triangles.
Next, consider tilted triangles that do not have any horizontal sides. There are two possible sizes illustrated by the
middle and right-most figures above. The smaller type with side

√
3 have a vertical edge and point either right or

left. There are 3 right-pointing triangles a three left-pointing triangles for a total of 6. There are only two of the
larger triangles with no horizontal line having side

√
7.

Th only other distances between pairs of points in the grid are 2
√

3 and
√

13, and it is easy to see that triangles
with these side lengths will not fit.
Thus there are 20+7+6+2 = 35 total triangles.
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2 Let triangle ABC have a right angle at C, and let M be the midpoint of the hypotenuse AB. Choose a point D on
line BC so that angle CDM measures 30 degrees. Prove that the segments AC and MD have equal lengths.

Solution: Drop the perpendicular from M to BC. Let P be the point where this perpendicular meets the line BC.
Since ∠MPB and ∠ACB are both right angles, and triangle MPB and triangle ACB share the angle at B, triangle
MPB and triangle ACB are similar. Since the length of MB is half the length of BA, side MP must be half the
length of AC. But triangle MPD is a 30− 60− 90 triangle, so the length of MP is also half the length of MD.
Therefore, the length of AC equals the length of MD.

CC BB

AA

MM

PP DD3030o30o

3 Define a size-n tromino to be the shape you get when you remove one quadrant from a 2n× 2n square. In the
figure below, a size-1 tromino is on the left and a size-2 tromino is on the right.

We say that a shape can be tiled with size-1 trominos if we can cover the entire area of the shape—and no excess
area—with non-overlapping size-1 trominos. For example, a 2×3 rectangle can be tiled with size-1 trominos as
shown below, but a 3×3 square cannot be tiled with size-1 trominos.

a) Can a size-5 tromino be tiled by size-1 trominos?
b) Can a size-2013 tromino be tiled by size-1 trominos?
Justify your answers.
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Solution: We will abbreviate “tile with size-1 trominos” with “tile.” It is possible to tile a size-5 tromino as
drawn.Tromino Tiling

   size 1   size 2         size 3              size 4                   size 5

. . .

3 × 2k

n even

3 × n

3 × (2n+2)

3 × (2n
+2)3 × n n odd

3 × (n 1)

3 × (n 2)

3 × (2n
2)

3 × (n
1)

size n+3 from size n

It is also possible to tile a size-2013 tromino. In fact, any size-n tromino can be tiled with size-1 trominos, which
can be proved with mathematical induction as follows.
Size-1, size-2, and size-3 trominos can be tiled as shown below.

Tromino Tiling

  size 1   size 2         size 3              size 4                   size 5

. . .

3 x 2k

n even

3 x n

3 x (2n+2)

3 x (2n+2)3 x n n odd

3 x (n-1)

3 x (2n-2)

3 x (2n-2)3 x (n-1)

size n+3 from size n

If k is even, it is possible to tile a 3× k rectangle as shown.

Tromino Tiling

  size 1   size 2         size 3              size 4                   size 5

. . .

3 x 2k

n even

3 x n

3 x (2n+2)

3 x (2n+2)3 x n n odd

3 x (n-1)

3 x (2n-2)

3 x (2n-2)3 x (n-1)

size n+3 from size n

Suppose that a size-n tromino can be tiled. Then we can tile a size-(n+3) tromino as follows.
If n is even, fill in the size-(n+3) tromino with a size-n tromino, plus a border of width 3 that can be made from
two 3×n rectangles at the ends, two 3× (2n+2) rectangles along the sides, and one corner patch that is a 4×4
square with a corner removed.
If n is odd, fill in the size-(n+3) tromino with a size-n tromino, plus a border that can be made from two 3×(n−1)
rectangles at the ends, two 3× (2n−2) rectangles at the sides, and three corner patches. See the figure below.
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Tromino Tiling

  size 1   size 2         size 3              size 4                   size 5

. . .

3 x 2k

n even

3 x n

3 x (2n+2)

3 x (2n+2)3 x n n odd

3 x (n-1)

3 x (2n-2)

3 x (2n-2)3 x (n-1)
size n+3 from size n

4 For a positive integer n > 2, consider the n−1 fractions

2
1
,

3
2
, · · · , n

n−1
.

The product of these fractions equals n, but if you reciprocate (i.e. turn upside down) some of the fractions, the
product will change. Can you make the product equal 1? Find all values of n for which this is possible and prove
that you have found them all.

Solution:
We will show that this is possible exactly when n is a perfect square larger than 1. Suppose that we can reciprocate
some of the fractions so that the resulting product is 1. Let r represent the product of the fractions that we will
reciprocate and t represent the product of the fractions that we will leave alone. Then r · t = n while 1

r · t = 1.
Multiplying these equations shows that n = t2, so n is the square of a rational number, which means that it has to
be a perfect square.
Now suppose that n = a2 is a perfect square. Then we can reciprocate the first a−1 terms of the product to obtain(

1
2

)
· · ·

(
a−1

a

)(
a+1

a

)
· · ·

(
a2

a2−1

)
=

1
a
· a

2

a
= 1,

demonstrating that modifying the product as desired is indeed possible for any perfect square.
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5 Let H be the orthocenter of an acute triangle ABC. (The orthocenter is the point at the intersection of the three
altitudes. An acute triangle has all angles less than 90◦.) Draw three circles: one passing through A, B and H,
another passing through B, C and H, and finally, one passing through C, A and H. Prove that the triangle whose
vertices are the centers of those three circles is congruent to triangle ABC.1

AA

BB

CC

HH

A’A’A’

C’C’C’

B’B’B’

HCHC

HAHA
HBHB

AA

BB

CC

HH

A’A’A’

C’C’C’

B’B’B’

A*A*
B*B*

C*C*

Solution 1:
See the figure on the left, above. Since B′ and C′ are each equidistant from A and H the line B′C′ is the perpendic-
ular bisector of AH. The line AH is also an altitude of 4ABC so AH is also perpendicular to BC. Since BC and
B′C′ are both perpendicular to AH they are parallel. Similarly, AB||A′B′ and CA||C′A′. Therefore we conclude
that4ABC is similar to4A′B′C′.
The extended law of sines states that for any triangle 4PQR inscribed in a circle, the diameter of that circle is
equal to |PR|

sin(∠PQR) .

Therefore, the diameter of the circumcircle of4BHC is |BC|
sin(∠BHC) and the diameter of the circumcircle of4ABC

is |BC|
sin(∠BAC) . Since the altitudes of 4ABC are perpendicular to the bases, the quadrilateral AHBHHC has right

angles at HB and BC so it is cyclic. Thus 180◦−∠BAC = ∠HBHHC. Because they are vertical angles, we have
∠HBHHC = ∠BHC, so 180◦−∠BAC = ∠BHC and therefore sin(∠BAC) = sin(∠BHC). Thus the diameters of
the two circumcircles mentioned above are equal.
The same argument can be made about the other two circumcircles, so the diameters of all four circles in the
diagram on the left above are equal. The point H lies on the three circles centered at A′, B′ and C′ and since all
the diameters are equal, H is the circumcenter of4A′B′C′ and the diameter of that circumcircle is the same as the
diameter of the circumcircle of 4ABC. Since 4ABC and 4A′B′C′ are similar and have circumcircles with the
same diameter, they are congruent.

Solution 2:
See the figure on the right, above. Use the same reasoning as in the first solution above to show that B′C′, C′A′

and A′B′ are the perpendicular bisectors of AH, BH and CH, respectively (so |AA∗| = |A∗H|, |BB∗| = |B∗H| and
|CC∗| = |C∗H|). From this it is easy to see that 4A∗B∗C∗ is homothetic to 4ABC with center H and dilation
factor 1/2.
We know that A∗B∗||AB since it is the midsegment of 4AHB and similarly B∗C∗||BC and C∗A∗||CA. Since by
similar reasoning as in the previous solution we know AB, BC and CA are respectively parallel to A′B′,B′C′ and
C′A′ we conclude that A∗B∗||A′B′, B∗C∗||B′C′ and C∗A∗||C′A′. The only way this can occur is if4A∗B∗C∗ is the

1This problem is related to Johnson’s Theorem. See, for example, http://en.wikipedia.org/wiki/Johnson circles
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medial triangle of4A′B′C′ so they are similar, and4A∗B∗C∗ is half the size of the other. It is also similar to and
half the size of4ABC, so4ABC and4A′B′C′ are congruent.

6 Consider a rectangular array of single digits di, j with 10 rows and 7 columns, such that di+1, j−di, j is always 1 or
−9 for all 1≤ i≤ 9 and all 1≤ j≤ 7, as in the example below. For 1≤ i≤ 10, let mi be the median of di,1, . . . ,di,7.
Determine the least and greatest possible values of the mean of m1,m2, . . . ,m10.
Example:

di,1 di,2 di,3 di,4 di,5 di,6 di,7 mi

i = 1 2 7 5 9 5 8 6 median is 6
i = 2 3 8 6 0 6 9 7 median is 6
i = 3 4 9 7 1 7 0 8 median is 7
i = 4 5 0 8 2 8 1 9 median is 5
i = 5 6 1 9 3 9 2 0 median is 3
i = 6 7 2 0 4 0 3 1 median is 2
i = 7 8 3 1 5 1 4 2 median is 3
i = 8 9 4 2 6 2 5 3 median is 4
i = 9 0 5 3 7 3 6 4 median is 4

i = 10 1 6 4 8 4 7 5 median is 5

Solution 1: Note that rearranging the columns does not change the medians, hence we may sort the first row, so
that d1,1 ≤ d1,2 ≤ . . . ≤ d1,7. The calculations are much simplified if we subtract i− 1 from each row. In other
words, we put Di, j = di, j− (i−1). This subtracts i−1 from the median mi as well – that is if Mi is the median of
Di, js, then Mi = mi−(i−1). Thus the sum of the Mis is equal to the sum of the mis minus 0+1+2+ . . .+9 = 45.
We shall show that sum of Mi’s is 0, so that the sum of the mis is 45 and the average is always 4.5.
Note that since D1,1 ≤ D1,2 ≤ . . . ≤ D1,7 the entry D1,4 is a median. The fourth column will continue to contain
a median until di,7 = 0 (at which point the third column will contain a median), that is 10−D1,7 times (note that
d1,7 = D1,7). The sum of those medians is then equal D1,4(10−D1,7). After that, median moves to the third column
and stays there until di,6 = 0 (this may be no time at all, if d1,6 = d1,7, but that will not affect the calculation). The
contribution of those medians is D1,3(D1,7−D1,6). Continuing this way we see that the medians in the second
column contribute D1,2(D1,6−D1,5) and ones in the first column D1,1(D1,5−D1,4). A median then moves to the
seventh column, but by that point its value has dropped, Di,7 = D1,7− 10. The contribution of those medians
is then (D1,7− 10)(D1,4−D1,3). Similarly for those in sixth and fifth columns we get (D1,6− 10)(D1,3−D1,2)
and (D1,5−10)(D1,2−D1,1). Finally the median moves to the fourth column again, staying there remaining D1,1
times, contributing (D1,4−10)D1,1. Overall, the sum of all medians is thus

D1,4(10−D1,7)+D1,3(D1,7−D1,6)+D1,2(D1,6−D1,5)+
D1,1(D1,5−D1,4)+(D1,7−10)(D1,4−D1,3)+(D1,6−10)(D1,3−D1,2)

+(D1,5−10)(D1,2−D1,1)+(D1,4−10)D1,1.

It is fairly easy to see that this expression is in fact equal to 0 (for example, by considering the linear and quadratic
terms separately). This means that the sum of new medians Mi is zero, and the sum of the original mi’s is 45, as
wanted,

Solution 2: We will prove a stronger claim: for all a, the number of mi’s equal to a equals the number of mi’s
equal to 9−a. (By a pairing argument, this implies that the average of the mi’s is 9/2.) Indeed, for 1≤ j ≤ 10 let
Mi, j denote the jth smallest entry in row i of the table (so that mi = Mi,4 ); we will show that for all a and j, the
number of Mi, j’s equal to a equals the number of Mi,8− j’s equal to 9−a.
Henceforth, all row-indices are to be interpreted modulo 10, and “between” is meant in the inclusive sense.
It follows from the defining property of the table that for all i between 1 and 10, all a between 0 and 9, and all
k between 0 and a, the number of k’s in row i equals the number of k + a’s in row i + a. Replacing a by 9− a,
and summing over all k between 0 and a, we find that the number of entries between 0 and a in row i equals the
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number of entries between 9− a and 9 in row i + 9− a. Hence for all j, the number of entries between 0 and a
in row i is greater than or equal to j if and only if the number of entries between 9− a and 9 in row i + 9− a is
greater than or equal to j. But this means that the j smallest entries in row i are all between 0 and a if and only if
the j largest entries in row i+9−a are all between 9−a and 9. That is, Mi, j ≤ a if and only if Mi+9−a,8− j ≥ 9−a.
Replacing a by a−1, we see also that Mi, j ≤ a−1 if and only if Mi+10−a,8− j ≥ 10−a. Combining the last two
facts, we conclude that Mi, j = a if and only if Mi+10−a,8− j = 9− a. Summing over i (and noting that i + 10− a
varies over 0,1, . . . ,9 mod 10 as i does), we see that the number of i’s with Mi, j = a equals the number of i’s with
Mi,8− j = 9−a, as was claimed above.

7 Let F1,F2,F3 . . . be the Fibonacci sequence, the sequence of positive integers with F1 = F2 = 1 and Fn+2 = Fn+1 +
Fn for all n≥ 1. A Fibonacci number is by definition a number appearing in this sequence.
Let P1,P2,P3, . . . be the sequence consisting of all the integers that are products of two Fibonacci numbers (not
necessarily distinct), in increasing order. The first few terms are

1,2,3,4,5,6,8,9,10,13, . . .

since, for example 3 = 1 ·3,4 = 2 ·2, and 10 = 2 ·5.
Consider the sequence Dn of successive differences of the Pn sequence, where Dn = Pn+1−Pn for n≥ 1. The first
few terms of Dn are

1,1,1,1,1,2,1,1,3, . . . .

Prove that every number in Dn is a Fibonacci number.

Solution Let Φ = 1+
√

5
2 and ϕ = 1−

√
5

2 . Note for later use that Φϕ =−1, Φ−ϕ =
√

5, Φ = Φ2−1, and ϕ = ϕ2−1.

We use Binet’s formula for the Fibonacci numbers: Fn = 1√
5
(Φn−ϕn). (The reader who is not familiar with

this formula may prove it inductively by checking that it works for n = 1,2 and is compatible with the Fibonacci
recurrence.)
Each Pn may be written as FjFk with j ≥ k. Binet’s formula gives

FjFk =
1
5
(Φ j−ϕ

j)(Φk−ϕ
k)

=
1
5
(Φ j+k +ϕ

j+k−Φ
j
ϕ

k−Φ
k
ϕ

j)

=
1
5
(Φ j+k +ϕ

j+k− (Φϕ)k(Φ j−k +ϕ
j−k))

=
1
5
(Φ j+k +ϕ

j+k− (−1)k(Φ j−k +ϕ
j−k))

=
1
5
(L j+k− (−1)kL j−k),

where we define Ln = Φn +ϕn. In what follows, we will use two properties of Ln: it is positive for all n≥ 0, and
Ln+4 > Ln for all n≥ 0. Both properties are easily proved via the observation that Ln is, for all n≥ 2, the integer
closest to Φn.
Now fix r and consider the set of products FjFk ( j≥ k) for which j+k = r. All of these products share a “leading”

term of 1
5 Lr. The remaining term can be written as − (−1)k

5 Lr−2k. By the two properties of Ln noted above, we
have

−Lr−4 <−Lr−8 <−Lr−12 < · · ·<−Lr−4br/4c < Lr−2−4b(r−2)/4c < · · ·< Lr−10 < Lr−6 < Lr−2

and thus
Fr−2F2 < Fr−4F4 < Fr−6F6 < · · ·< Fr−5F5 < Fr−3F3 < Fr−1F1. (1)

We note that the smallest and largest products in inequality (1) are Fr−2F2 = Fr−2 and Fr−1F1 = Fr−1, respectively.
Thus the largest product FjFk with j + k = r is equal to the smallest product FjFk with j + k = r +1. This implies
that the sequence P1,P2,P3, . . . consists of chains of the form (1) strung end to end for successively increasing
values of r. All that remains is to show that the difference between any two consecutive terms in (1) is a Fibonacci
number.
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Such differences are of the form 1
5 (Ln+2−Ln−2) (for some integer n), except in the middle where there is one

difference of the form 1
5 (Ln+1 +Ln−1). We now show that both of these expressions are equal to Fn:

Fn =
1√
5
(Φn−ϕ

n)

=
Φ−ϕ

5
(Φn−ϕ

n)

=
1
5
(Φn+1 +ϕ

n+1−Φϕ(Φn−1 +ϕ
n−1))

=
1
5
(Φn+1 +ϕ

n+1 +Φ
n−1 +ϕ

n−1) (=
1
5
(Ln+1 +Ln−1))

=
1
5
(Φn+2−Φ

n +ϕ
n+2−ϕ

n +Φ
n−Φ

n−2 +ϕ
n−ϕ

n−2)

=
1
5
(Φn+2 +ϕ

n+2−Φ
n−2−ϕ

n−2) (=
1
5
(Ln+2−Ln−2)).

Therefore, every term of D1,D2,D3, . . . is a Fibonacci number.


