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BAMO 2014 Problems and Solutions

A The four bottom corners of a cube are colored red, green, blue, and purple. How many ways are there
to color the top four corners of the cube so that every face has four different colored corners? Prove that
your answer is correct.

Solution: There is just one coloring; it’s forced: Without loss of generality, suppose that the corners
are colored in order, R, G, B, P, as shown below.

Notice that vertex X cannot be R, B, or B; it must therefore be colored P. Likewise, every other vertex
on the top has only one possible color, since each top vertex is part of a two faces which collectively use
three different colors on the bottom level. So there is only one solution, namely, starting from vertex X
and going counterclockwise (as seen from above): P, R, G, B.

B There are n holes in a circle. The holes are numbered 1,2,3 and so on to n. In the beginning, there is
a peg in every hole except for hole 1. A peg can jump in either direction over one adjacent peg to an
empty hole immediately on the other side. After a peg moves, the peg it jumped over is removed. The
puzzle will be solved if all pegs disappear except for one. For example, if n = 4 the puzzle can be solved
in two jumps: peg 3 jumps peg 4 to hole 1, then peg 2 jumps the peg in 1 to hole 4. (See illustration
below, in which black circles indicate pegs and white circles are holes.)
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(a) Can the puzzle be solved when n = 5?

(b) Can the puzzle be solved when n = 2014?

In each part (a) and (b) either describe a sequence of moves to solve the puzzle or explain why it is
impossible to solve the puzzle.

Solution: (a) Here is a sketch that shows why there is no solution. After the first move, without loss
of generality, there will be two empty locations next to one another, and after the next move, there will
be two pegs left, separated by one empty space on one side and by two empty spaces on the other side.
After this, it is impossible to proceed, so we are stuck with two pegs. (b) For even n it is pretty easy to
construct a solution:

Suppose the holes are numbered 0, 1, 2, ..., n− 1 with hole 0 initially empty. Then do the following
steps: Jump 2 into 0, 4 into 2, 6 into 4, 8 into 6, ... n−2 into n−4. Now you’re left with a peg in n−1
next to 0, and holes 2, 4, 6, ..., n−4 are filled, so just jump the peg in n−1 over all the even pegs like a
successive capture in checkers, and you’re done.

C and 1 Amy and Bob play a game. They alternate turns, with Amy going first. At the start of the game,
there are 20 cookies on a red plate and 14 on a blue plate. A legal move consists of eating two cookies
taken from one plate, or moving one cookie from the red plate to the blue plate (but never from the blue
plate to the red plate). The last player to make a legal move wins; in other words, if it is your turn and
you cannot make a legal move, you lose, and the other player has won.

Which player can guarantee that they win no matter what strategy their opponent chooses? Prove that
your answer is correct.

Solution: Let’s write the number of cookies in the red and blue plate, respectively, as an ordered pair
(x,y), so that the legal moves are to (x−2,y) or (x,y−2) or (x−1,y+1). Thus the only positions with
no legal move are (0,0) and (0,1), and since cookies are eaten in pairs, the final position is determined
by the original number of cookies.

Starting from (20,14), we know that eventually all the cookies will be eaten, so there are exactly (20+
14)/2 = 17 cookie-eating moves. There may also be some number of moves from the first pile to the
second pile, but since an even number of cookies are eaten from each pile, there must be an even number
of such moves. Thus, the total number of moves in the game is odd, and the first player gets the last
legal move.

For general starting positions, there are a few cases to examine depending on whether the total number
of cookies is even and the number of cookies in pile 2 is even, but the logic is similar.

D and 2 Let ABC be a scalene triangle with the longest side AC. (A scalene triangle has sides of different
lengths.) Let P and Q be the points on the side AC such that AP = AB and CQ = CB. Thus we have
a new triangle BPQ inside triangle ABC. Let k1 be the circle circumscribed around the triangle BPQ
(that is, the circle passing through the vertices B, P, and Q of the triangle BPQ); and let k2 be the circle
inscribed in triangle ABC (that is, the circle inside triangle ABC that is tangent to the three sides AB,
BC, and CA). Prove that the two circles k1 and k2 are concentric, that is, they have the same center.

Solution: Triangle CBQ is isosceles, so the perpendicular bisector of side BQ is angle bisector of angle
C. Similarly for BP and A. The intersection of these two bisectors is the circumcenter of BPQ and the
incenter of ABC.
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3 Suppose that for two real numbers x and y the following equality is true:

(x+
√

1+ x2)(y+
√

1+ y2) = 1.

Find (with proof) the value of x+ y.

Solution 1 (Rationalize and Factor): Move the y’s to the other side by dividing both sides by y+√
1+ y2:

x+
√

1+ x2 =
1

y+
√

1+ y2
.

Then get rid of the denominator on the right hand side by multiplying top and bottom of the fraction by
−y+

√
1+ y2:

x+
√

1+ x2 =

√
1+ y2)− y

(y+
√

1+ y2)(
√

1+ y2− y)
=

√
1+ y2)− y

(1+ y2)− y2 =
√

1+ y2− y.

Now move back y to the left and the radical
√

1+ x2 to the right:

x+ y =
√

1+ y2−
√

1+ x2.

Now, again “rationalize” the right hand side by multiplying it and dividing by
√

1+ y2 +
√

1+ x2:

x+ y =
(
√

1+ y2−
√

1+ x2)(
√

1+ y2 +
√

1+ x2)√
1+ y2 +

√
1+ x2

=
(1+ y2)− (1+ x2)√

1+ y2 +
√

1+ x2
=

y2− x2√
1+ y2 +

√
1+ x2

·

Move the denominator over the left hand side and factor y2− x2 = (y− x)(y+ x) on the right hand side:

(x+ y)(
√

1+ y2 +
√

1+ x2) = (x+ y)(x− y).

Finally, move the right hand side to the left and factor out (x+ y):

(x+y)(
√

1+ y2+
√

1+ x2−(x−y)) = 0, or, equivalently, (x+y)((
√

1+ y2+y)+(
√

1+ x2−x)) = 0.

Regardless of what x and y are, we always have 1+ y2 > y2 and 1+ x2 > x2, and hence
√

1+ y2 > |y|
and
√

1+ x2 > |x|, which implies
√

1+ y2 + y > 0 and
√

1+ x2− x > 0. Thus, the second factor in the
product above, (

√
1+ y2 + y)+ (

√
1+ x2− x) is always positive. So the product can equal 0 only if

x+ y = 0.

Solution 2: (Clever Manipulations) Suppose

(x+
√

1+ x2)(y+
√

1+ y2) = 1.

Multiply both sides by −y+
√

1+ y2 to get

x+
√

1+ x2 =−y+
√

1+ y2.

Rearrange to get
x+ y =

√
1+ y2−

√
1+ x2. (1)

By a symmetrical argument, we also have

x+ y =
√

1+ x2−
√

1+ y2. (2)
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Average (1) and (2) to conclude that x+ y = 0.

Solution 3: (Calculus) We note that y =−x gives (x+
√

1+ x2)(y+
√

1+ y2 = 1+x2−x2 = 1. Further
the function x+

√
1+ x2 is monotone increasing (easy with calculus) so for a given x there is at most

one solution to (x+
√

1+ x2)(y+
√

1+ y2 = 1, hence that solution always is −x.

Solution 4: (Trigonometry): The equality can’t hold if x and y are of the same sign. If x = 0 then y = 0
and vice versa. So WLOG, assume x > 0 y < 0. There are angles X and Y in (−π/2,π/2) such that
cotX = x and cotY = y. Then

√
1+ x2 = 1

sinX and
√

1+ y2 =− 1
sinY , x+

√
1+ x2 = cosX+1

sinX = cotX/2,
y+

√
1+ y2 = cosy−1

siny = tan−Y/2, so tan(−Y/2)cot(X/2) = 1, so tanX/2 = tan−Y/2, so X =−Y .

4 Let F1,F2,F3, . . . be the Fibonacci sequence, the sequence of positive integers satisfying

F1 = F2 = 1 and Fn+2 = Fn+1 +Fn for all n≥ 1.

Does there exist an n≥ 1 for which Fn is divisible by 2014?

Solution: Yes! in fact, F54 = 86267571272 is a multiple of 2014 (although you are not required to find
this index), and every 54th Fibonacci number thereafter will be a multiple of 2014. To see why, we write
the sequence (mod 2014): our goal is to show that it equals zero eventually. Although conventionally,
the Fibonacci sequence starts with F1 = F2 = 1, we can extend it backwards—this is the crux idea—with
F0 = 0.

Next, we can show that the sequence is eventually periodic: There are only 2014 different values (mod
2014), and thus 20142 possible distinct consecutive pairs of numbers. By the pigeonhole principle,
eventually, after at most 20142 + 1 steps, we will see the same consecutive pair repeated, and this will
then determine the rest of the sequence, with repeating blocks of the same numbers, ad infinitum.

We will be done if the periodic block begins with F0 = 0, since this would imply infinitely many zeros.
But perhaps the periodic block didn’t start at the beginning. We will use the ”extending backwards”
idea to show that, in fact, periodicity must start at the beginning of the sequence (F0).

Suppose that a periodic block starts at FM = a,FM+1 = b, and has length L, in other words, ends at
FM+L−1, and suppose that M > 0. Notice that by going backwards, we can compute FM+L−1 = b− a,
since the next periodic block starts at index M +L, and FM+L = a and FM+L+1 = b. Likewise, we can
keep going backwards from FM to deduce that FM−1 = FM+L−1 and FM−2 = FM+L−2, etc., so eventually
we will get F0 = FL. So the periodicity starts at F0 and we are guaranteed to see zeros every L steps.

Remark: This proof shows that the length of the period is at most 20142 +1, when in fact it was much
smaller (namely, 54). It can be proven that for a prime p, the maximum period for divisibility (mod p)
is p+1.

5 A chess tournament took place between 2n+ 1 players. Every player played every other player once,
with no draws. In addition, each player had a numerical rating before the tournament began, with no
two players having equal ratings.

It turns out there were exactly k games in which the lower-rated player beat the higher-rated player.
Prove that there is some player who won no less than n−

√
2k and no more than n+

√
2k games.

Solution: We suppose the desired conclusion is false, and seek a contradiction. Refer to the players as
P0,P1, . . . ,P2n in increasing order of their rating. Call a game an upset if the lower-rated player beat the
higher-rated player.
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Let r = b
√

2kc. By assumption, for each value i = 1,2, . . . ,r, player Pn−i won either less than n− r or
more than n+ r games. In the first case, player Pn−i must have lost more than r− i games against lower-
rated players; in the second case, player Pn−i must have won more than r+ i games against higher-rated
players. Either way, Pn−i participated in at least r− i+1 upsets.

By similar arguments, for each i = 1,2, . . . ,r, player Pn+i also participated in at least r− i+ 1 upsets,
and player Pn participated in at least r+1 upsets. Thus, altogether, we have at least

[r+(r−1)+(r−2)+ · · ·+1]+ [r+(r−1)+(r−2)+ · · ·+1]+ (r+1) = (r+1)2

participations in upsets. Every upset involved precisely two players, so this requires a total of at least
(r+1)2/2 upsets.

However,
√

2k< r+1, so k< (r+1)2/2. So the number of upsets is less than (r+1)2/2, a contradiction.

Alternative Solution: The following solution, shown in its entirety, received the 2014 Brilliancy Prize
for its clarity and beauty, and sense of fun!
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