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The problems from BAMO-8 are A–E, and the problems from BAMO-12 are 1–5.

A A tangent line to a circle is a line that intersects the circle in exactly
one point. A common tangent line to two circles is a line that is
tangent to both circles. As an example, in the figure to the right,
line a is a common tangent to both circles, but line b is only tangent
to the larger circle.

a

b

Given two distinct circles in the plane, let n be the number of common tangent lines that can be
drawn to these two circles. What are all possible values of n? Your answer should include drawings
with explanations.

Solution: The possible values of n are 0, 1, 2, 3, and 4. These cases are illustrated below.

n = 0 Two nonintersecting circles, one contained inside the other

n = 1 Two circles internally tangent to each other

n = 2 Two circles intersecting at two points

n = 3 Two circles externally tangent to each other

n = 4 Two nonintersecting circles, neither contained inside the other



B Ara and Bea play a game where they take turns putting numbers
from 1 to 5 into the cells of the X-shaped diagram on the right. Each
number must be played exactly once, and a cell cannot have more
than one number placed in it. Ara’s goal is for the two diagonals of
the X diagram to have the same sum when the game is over; Bea’s
goal is for these two sums to be unequal.

(a) Show that Ara can always win if he goes first.
(b) Show that Bea can always win if she goes first.

Solution:

(a) Suppose Ara goes first. He can begin by placing a 5 in the center of the board. This is the only
space shared by both diagonals, so when the game is over, the two diagonal sums are guaranteed
to add up to 1+2+3+4+5+5 = 20.

For her first move, Bea must play some number n in one of the four corner spaces, where n = 1,
2, 3, or 4. Ara can then respond by playing 5−n in the opposite corner, completing a diagonal.
(We know this move is still available, because 5−n is either 1, 2, 3, or 4, and cannot be equal to
n.)

After these three moves, the sum of the completed diagonal is 5+ n+(5− n) = 10. Since the
two diagonal sums will add up to 20 at the end of the game, the other diagonal sum will also be
10. Thus Ara will win.

(b) Suppose Bea goes first. She can begin by placing a 2 in the center of the board. By the same
reasoning as in part (a), the two diagonal sums are now guaranteed to add up to 1+2+3+4+
5+2 = 17 at the end of the game.

For the diagonal sums to be equal, each diagonal sum would have to be 17
2 . But the diagonal

sums are integers, so this cannot happen. Therefore, no matter what the remaining moves are,
Bea will win.

Note that Ara’s strategy also works with starting with 1 or 3 (because they are odd). Likewise, Bea
can start with 2 or 4.

C/1 Mr. Murgatroyd decides to throw his class a pizza party, but he’s going to make them hunt for it first.
He chooses eleven locations in the school, which we’ll call 1,2, . . . ,11. His plan is to tell students to
start at location 1, and at each location n from 1 to 10, they will find a message directing them to go
to location n+1; at location 11, there’s pizza!

Mr. Murgatroyd sends his teaching assistant to post the ten messages in locations 1 to 10. Unfor-
tunately, the assistant jumbles up the message cards at random before posting them. If the students
begin at location 1 as planned and follow the directions at each location, show that they will still get
to the pizza.

Solution: If the students never visit the same room twice, then their hunt lasts a finite number of
steps. In that case, they must reach the pizza (since the hunt always continues if they have not yet
reached the pizza).

Therefore, the only way for the students to not reach the pizza is for them to visit the same room
twice, which gets them stuck in a loop. Such a loop must consist of n rooms containing n messages
that collectively point to that set of n rooms. But this means that all the messages pointing into the
loop are in rooms that are part of the loop, so there’s no way to enter the loop from outside.

Room 1 can’t be part of a loop, since no message points to room 1. Thus, the students do not begin
in a loop. Since they cannot enter a loop, they eventually get to the pizza. (In fact, they get to the



pizza at least as quickly as Mr. Murgatroyd intended, since the worst case is that they have to visit
every room once!)

D/2 Given a positive integer N (written in base 10), define its integer substrings to be integers that are
equal to strings of one or more consecutive digits from N, including N itself. For example, the integer
substrings of 3208 are 3, 2, 0, 8, 32, 20, 320, 208, and 3208. (The substring 08 is omitted from this
list because it is the same integer as the substring 8, which is already listed.)

What is the greatest integer N such that no integer substring of N is a multiple of 9? (Note: 0 is a
multiple of 9.)

Solution: The answer is 88,888,888.

In our solution, we’ll make use of the well-known fact that an integer is divisible by 9 if and only if
the sum of its digits (in base 10) is divisible by 9. It was permissible to use this fact without proof
on the contest, but for the sake of completeness, a proof can be found in the appendix following this
solution.

No integer substring of 88,888,888 is divisible by 9, since 9 does not divide 8k for any k = 1, . . . ,8.

We now show that every N > 88,888,888 has an integer substring divisible by 9.

Suppose N > 88,888,888. If N has 8 digits, then one of those digits must be 9, which constitutes
an integer substring by itself, so we are done. Thus, we assume from now on that N has 9 or more
digits.

We claim that for any such N, there is some integer substring divisible by 9. In fact, we will describe
an algorithm to find such a substring, using N = 328,346,785 as an illustrative example. For 0≤ k≤
9, let sk be the sum of the first k digits of N, where we define s0 to be 0. We can think of sk as a
“running total” of the digits; here is our example number with s0, . . . ,s9 written below it:

3 2 8 3 4 6 7 8 5
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 3 5 13 16 20 26 33 41 46

Next we consider the remainders left by s0, . . . ,s9 when they are divided by 9. We have ten remainders
with only nine possible values. By the pigeonhole principle, some two remainders must be equal.
For instance, in our example, two of the remainders are equal to 5:

3 2 8 3 4 6 7 8 5
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 3 5 13 16 20 26 33 41 46
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 3 5 4 7 2 8 6 5 1

Suppose it is s j and sk that leave the same remainder (where j < k). Then sk− s j is divisible by 9.
But sk−s j is the sum of the digits of the integer substring consisting of the ( j+1)th through kth digits
of N. In the example above, for instance, this substring is 834678:

3 2 8 3 4 6 7 8 5
↓ ↓
5 41

and we have 8+3+4+6+7+8 = 41−5 = 36, a multiple of 9.

Since we have an integer substring whose digits add up to a multiple of 9, that substring is itself a
multiple of 9, and we are finished.



Appendix. Here is the proof of the “well-known fact” mentioned at the beginning. To keep the
notation simple, we state the proof for 4-digit integers; it should be clear how to generalize to integers
with any number of digits.

Let n = abcd, where the underline means we are writing the digits of n. By the nature of base 10
representation, we have

n = 1000a+100b+10c+d

= (999+1)a+(99+1)b+(9+1)c+d

= (999a+99b+9c)+(a+b+ c+d).

The first bracketed quantity is a multiple of 9. Thus, n and a+b+ c+d differ by a multiple of 9. In
particular, if n is a multiple of 9, then so is a+b+ c+d (the sum of its digits), and vice versa. This
completes our proof.

E/3 In the following figure—not drawn to scale!—E is the midpoint of BC, triangle FEC has area 7, and
quadrilateral DBEG has area 27. Triangles ADG and GEF have the same area, x. Find x.

A

B C

D

E

F

G

Solution: The answer is x = 8.

Use the notation [·] to denote the area of a polygon. Draw GB; notice that triangles GBE and GEC
have equal bases and altitudes, so [GBE] = [GEC] = x+7. Since [ABE] = 27+ x, we have [GDB] =
20− x.

Likewise, if we draw AC, we see that [ABE] = [AEC] = 27+ x, so [AGC] = 20, which implies that
[CAD] = 20+ x.
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Now triangles GAD and GDB have the same altitude (from G to AB), so their bases are proportional
to their respective areas. In other words,

AD
DB

=
[GAD]

[GDB]
=

x
20− x

.

But AD and DB are also the bases of triangles CAD and CBD, which have the same altitude (from C
to AB). Hence

AD
DB

=
[CAD]

[CDB]
=

20+ x
34+ x

.

Equating these two fractions leads to the quadratic equation 34x+ x2 = 400− x2; the only positive
solution is x = 8.

4 Zaineb makes a large necklace from beads labeled 290,291,292, . . . ,2023. She uses each bead ex-
actly once, arranging the beads in the necklace any order she likes. Prove that no matter how the
beads are arranged, there must be three beads in a row whose labels are the side lengths of a triangle.

Solution: More generally, we will prove that if there are 6n beads labeled n+1,n+2, . . . ,7n, there
must be three beads in a row whose labels are the side lengths of a triangle. (When n = 289, this
coincides with the problem statement.)

Aiming for a contradiction, assume there are no three beads in a row whose labels are the side lengths
of a triangle.

By starting at an arbitrary position on the necklace and counting off three beads at a time, partition
the 6n beads into 2n trios of consecutive beads. Let S be the sum obtained by adding together the
smallest two numbers from every trio. (Thus, S is a sum of 4n numbers.) Let T be the sum obtained
by adding the largest number from every trio.

By our assumption, within each trio, the sum of the two smallest numbers is less than or equal to the
largest number. By adding these inequalities across all trios, we see that S≤ T .

On the other hand, S can be no smaller than the sum of the 4n smallest numbers. Using the formula
for the sum of an arithmetic progression, we have

S≥ (n+1)+(n+2)+ · · ·+(5n) =
(4n)(6n+1)

2
= 12n2 +2n.



Similarly, T can be no larger than the sum of the 2n largest numbers:

T ≤ (5n+1)+(5n+2)+ · · ·+(7n) =
(2n)(12n+1)

2
= 12n2 +n.

Thus T ≤ 12n2 +n < 12n2 +2n≤ S, which contradicts our earlier claim that S≤ T .

We have arrived at a contradiction, so there must in fact be three beads in a row whose labels are the
side lengths of a triangle.

5 A lattice point in the plane is a point with integer coordinates. Let T be a triangle in the plane
whose vertices are lattice points, but with no other lattice points on its sides. Furthermore, suppose
T contains exactly four lattice points in its interior. Prove that these four points lie on a straight line.

Solution: Let us begin with some preliminaries. In the solution to follow, we treat points freely
as vectors, e.g. writing nA to mean the point whose coordinates are n times the coordinates of A, or
A+B to mean the point which is the coordinate-wise sum of A and B.

A basic result from vector geometry, which we will assume, states that given any three noncollinear
points A,B,C in the plane, every point Q may be represented in the form rA+ sB+ tC for unique
r,s, t satisfying r+ s+ t = 1. Moreover, Q is in the interior of4ABC if and only if such r,s, t are all
positive. In similar fashion, any point on the line through A and B can be expressed as rA+ sB with
r+ s = 1, and lies between A and B if and only if r,s > 0.

We will also make repeated use of Pick’s Theorem, which we now state without proof. This theorem
asserts that a lattice polygon (a polygon whose vertices are lattice points) has area equal to

i+
1
2

b−1,

where i and b are the number of lattice points on the polygon’s interior and boundary, respectively.
Thus (for instance), the triangle T described in the problem must have area 4+ 1

2(3)−1 = 9
2 .

Now we are ready to begin the solution. With no loss of generality, let us assume T has one vertex at
the origin O, which we identify with the zero vector. Call the other two vertices A and B.

Of the four lattice points in the interior of T , let P be the point closest to line OA. It follows that there
are no lattice points lying inside 4OPA or on its boundary, other than O,P,A themselves, since any
such point would be closer than P to line OA. Therefore, by Pick’s Theorem,4OPA has area 1

2 .

Lemma: Every lattice point Q can be expressed in the form nP+kA for some pair of integers (n,k).
Moreover, when Q is expressed in such form, we have n = 2[OQA]. (The brackets represent area.)

Proof. Let Q be a lattice point. By Pick’s Theorem, [OQA] = n
2 for some integer n. Thus [OQA] =

n · [OPA]. By the base–height formula for triangle area, it follows that Q is on the line parallel to line
OA that passes through the point nP. Thus Q = nP+ kA for some real k, where kA is a lattice point.

We assert that k is an integer. Indeed, if {k} denotes the fractional part of k, then {k}A = kA−bkcA is
a lattice point which lies on segment OA, part of the boundary of T . Since T has no lattice points on
its boundary other than its vertices, we must have {k}= 0. This completes the proof of the lemma.

Let us return to the main problem. As already noted, [T ] = [OBA] = 9
2 . Thus by the lemma, B = 9P−

kA for some integer k (the minus sign in the expression is not a typo, but a deliberate convenience for
what follows). Rearranging, and using the fact that O is the zero vector, we have P= k

9 A+ 1
9 B+ 8−k

9 O.
Since P is in the interior of T , we have 0 < k < 8. We will consider the possible values of k in turn.

If k ≡ 0 (mod 3), then 1
3 B = 3P− k

3 A is a lattice point lying on segment OB. This contradicts the
specification of T as having no lattice points on its sides.



If k ≡ 2 (mod 3), then 1
3 B+ 2

3 A = 3P− k−2
3 A is a lattice point lying on AB, similarly yielding a

contradiction.

The remaining possibilities are k = 1,4,7.

If k = 1, then the interior of T contains in its interior the four collinear lattice points

P = 1
9 A+ 1

9 B+ 7
9 O, 2P = 2

9 A+ 2
9 B+ 5

9 O, 3P = 3
9 A+ 3

9 B+ 3
9 O, 4P = 4

9 A+ 4
9 B+ 1

9 O.

If k = 4, then the interior of T contains in its interior the four collinear lattice points

P= 4
9 A+ 1

9 B+ 4
9 O, 3P−A= 3

9 A+ 3
9 B+ 3

9 O, 5P−2A= 2
9 A+ 5

9 B+ 2
9 O, 7P−3A= 1

9 A+ 7
9 B+ 1

9 O.

If k = 7, then the interior of T contains in its interior the four collinear lattice points

P= 7
9 A+ 1

9 B+ 1
9 O, 2P−A= 5

9 A+ 2
9 B+ 2

9 O, 3P−2A= 3
9 A+ 3

9 B+ 3
9 O, 4P−3A= 1

9 A+ 4
9 B+ 4

9 O.

Thus, the four lattice points inside T are collinear in every case, as desired.

Solution 2: We assume the same basic facts about vectors as in the previous solution, as well as
Pick’s Theorem and the determinant formula for the area of a parallelogram.

Let T have vertices A = (x1,y1), B = (x2,y2), and C = (x3,y3). We know that

(1)
∣∣∣∣x2− x1 x3− x1
y2− y1 y3− y1

∣∣∣∣= 2[ABC] = 9.

Consider equation (1) modulo 3, that is, over the field Z/3Z. In this setting, the determinant is zero,
so the vectors u = (x2− x1,y2− y1) and v = (x3− x1,y3− y1) are linearly dependent. If either of
these vectors is zero (mod 3, that is), or if they are equal, then the trisection points of a side of T are
lattice points, which contradicts the problem statement. Thus u,v 6= 0 and u =−v.

An immediate consequence is that (x1+x2+x3,y1+y2+y3) = u+v+3(x3,y3) = 0 over Z/3Z, with
the result that the centroid, G = 1

3(A+B+C), is a lattice point.

Now consider4ABG, whose area is 1
3 [ABC] = 3

2 . By Pick’s Theorem,4ABG has either

• one lattice point in its interior and none on its boundary (besides vertices), or

• two lattice points on its boundary.

Case 1: 4ABG has a lattice point in its interior and none on its boundary. In this case, a repetition of
the preceding (mod 3) argument shows that the centroid G1 of4ABG is a lattice point. In this case,
G1 + k(G−G1) for k = 0,1,2,3 are four collinear lattice points inside T .

Case 2: 4ABG has two lattice points on its boundary. Note that if at least two lattice points occur
on a line, then the lattice points on that line occur at regular intervals. Thus the two lattice points on
the boundary of4ABG are either the midpoints of AG and BG or the trisection points of one of these
sides (say, AG). In the two cases, if we extend side AG beyond G, the next lattice point occurring
on the extension is respectively either on T (at the midpoint of side BC), which is a contradiction, or
inside T , being then the fourth collinear lattice point inside T . So we are finished.

Alternative solutions (sketches): One participant used the simplifying idea of an affine transforma-
tion. Start by assuming the that one vertex of the triangle is at the origin (0,0) and another at the point
(m,n), where m and n are relatively prime (why?). Use this and Pick’s theorem to show that we can
find integers p,q so that the linear transformation that maps (x,y) to (nx−my, px+qy) will transform
our triangle to one with vertices at (0,0) and (0,1), with the third vertex having x-coordinate of 9.
We now have a (fairly) simple triangle with a number of relatively simple cases to examine.



Another participant used barycentric coordinates, where the coordinates of points in or on the trian-
gle is a weighted average of the coordinates of the vertices. This gives convenient ways to character-
ize colinear points, among other things.


