
1st Bay Area Mathematical Olympiad

February 23, 1999

The time limit for this exam is 4 hours. Your solutions should be clearly written arguments. Merely stating
an answer without any justification will receive little credit. Conversely, a good argument which has a few minor
errors may receive substantial credit.

Please label all pages that you submit for grading with your identification number in the upper-right hand
corner, and the problem number in the upper-left hand corner. Write neatly. If your paper cannot be read, it
cannot be graded! Please write only on one side of each sheet of paper. If your solution to a problem is more than
one page long, please staple the pages together.

The five problems below are arranged in roughly increasing order of difficulty. In particular, problems 4 and
5 are quite difficult. Few, if any, students will solve all the problems; indeed, solving one problem completely is a
fine achievement. We hope that you enjoy the experience of thinking deeply about mathematics for a few hours,
that you find the exam problems interesting, and that you continue to think about them after the exam is over.
Good luck!

1 Prove that among any 12 consecutive positive integers there is at least one which is smaller than the sum
of its proper divisors. (The proper divisors of a positive integer n are all positive integers other than 1
and n which divide n. For example, the proper divisors of 14 are 2 and 7.)

2 Let C be a circle in the xy-plane with center on the y-axis and passing through A = (0,a) and B = (0,b)
with 0 < a < b. Let P be any other point on the circle, let Q be the intersection of the line through P and
A with the x-axis, and let O = (0,0). Prove that ∠BQP = ∠BOP.

3 A lock has 16 keys arranged in a 4×4 array, each key oriented either horizontally or vertically. In order
to open it, all the keys must be vertically oriented. When a key is switched to another position, all the
other keys in the same row and column automatically switch their positions too (see diagram). Show
that no matter what the starting positions are, it is always possible to open this lock. (Only one key at a
time can be switched.)
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Please turn over for problems #4 and #5.



4 Finitely many cards are placed in two stacks, with more cards in the left stack than the right. Each card
has one or more distinct names written on it, although different cards may share some names. For each
name, we define a “shuffle” by moving every card that has this name written on it to the opposite stack.
Prove that it is always possible to end up with more cards in the right stack by picking several distinct
names, and doing in turn the shuffle corresponding to each name.

5 Let ABCD be a cyclic quadrilateral (a quadrilateral which can be inscribed in a circle). Let E and F be
variable points on the sides AB and CD, respectively, such that AE/EB = CF/FD. Let P be the point
on the segment EF such that PE/PF = AB/CD. Prove that the ratio between the areas of triangle APD
and BPC does not depend on the choice of E and F .
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Solutions

1 One of the twelve numbers must be a multiple of twelve; call it a = 12n. Among the proper divisors of
a are the integers 2n,3n,4n,6n. These sum to 15n > a.

2 We make use of the fact that an angle inscribed in a circle has measure equal to one-half of the arc
subtended. Since the x- and y-axes meet in a right angle, the circle C1 through B,O, and Q has QB as
a diameter. Also, ∠APB is a right angle, since AB is the diameter of C. But this means that ∠QPB
and ∠QOB are both right angles, so that P,O,Q,B all lie on circle C1. Thus the two angles in question,
∠BQP and ∠BOP are inscribed in C1, subtend the same arc, and are therefore equal.
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3 The problem is solved if there is a way to change the orientation of any specified single key, without
changing any of the others. This is equivalent to finding a way to switch the chosen key an odd number
of times, while switching all other keys a even number of times.
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M

This can be done by switching all keys on the same row and column of the chosen key (including the
chosen key). To see why, choose a key K. If we switch it and all of its “sisters” that share the same
row and column, K will be switched 7 times, since K itself is turned, and each of K’s sisters are turned,
which automatically switches K 6 more times. Now, examine the other 15 keys in the lock. There are
two cases: either the key is a sister of K, or not. Suppose that L is a sister of K, say, sharing a row with
K. Then L will be switched 4 times, since all 4 keys in its row (including L) will be turned, and each turn
switches L. For the other case, suppose M is not a sister of K. Then L will be switched twice, because
among the 6 sisters of K which are turned, exactly two of them share a row or column with L.

Consequently, of all the keys in the lock, only K is switched an odd number of times. All other keys are
switched either 2 or 4 times, leaving their orientation unchanged. Thus we will be able to open the lock
by selecting each horizontal key one-by-one, and turning it and all of its sister keys.

Next, consider a key M which is initially vertical. But by the same argument as above, each horizontal
sister will cause M to switch 4 times. Hence M will switch an even number of times (a multiple of 4,
perhaps zero).



4 Let the number of cards be c and let the number of distinct names be n. Each card contains a set of
names; denote these sets by S1,S2, . . . ,Sc (some of these sets may share elements). Now let E be a
subset of the set of n names, and denote by D(E) the difference of the number of cards in the left stack
and the number in the right stack, after the cards are shuffled by the names in E. We are given that
D( /0)> 0; we must show that there exists a subset E such that D(E)< 0.

Consider the sum of all D(E) as E ranges through all 2n possible subsets of names. If we can show that
this sum is equal to zero, we will be done, since D( /0) > 0 is just one term in this sum, forcing at least
one other term to be negative.

For i = 1,2, . . . ,c, let vi =+1 or−1 if the ith card is initially in the left or right stack, respectively. Then

D( /0) =
c

∑
i=1

vi.

Now consider what happens when we shuffle the cards corresponding to a subset E of names. The ith
card will move back and forth from one stack to the other a total of |E∩Si| times (|A|means the number
of elements in the set A). The only thing that matters is whether this value is even or odd. Thus we have

D(E) =
c

∑
i=1

(−1)|E∩Si|vi.

It remains to sum this expression over all subsets E. Let us examine what happens just for one card; i.e.,
let us compute

∑
E
(−1)|E∩Si|vi

for a fixed i as E ranges over all 2n subsets. If we can show that this equals zero, then the entire sum will
equal zero and we are done. Let |Si|= k. Then |E ∩Si| will range from 0 to k inclusive. For 0 < r < k,
how many subsets E are there such that |E ∩ Si| = r? There are

(k
r

)
subsets of Si with r elements. Fix

one of them, call it T . Then E must contain all the elements of T , plus any subset of the names that
are not contained in Si. In other words, there are 2n−k subsets containing T , and thus there are

(k
r

)
2n−k

subsets E altogether satisfying |E ∩Si|= r. Therefore

∑
E
(−1)|E∩Si|vi = vi

k

∑
r=0

(−1)r
(

k
r

)
2n−k = 2n−kvi

k

∑
r=0

(−1)r
(

k
r

)
.

By the binomial theorem, we have

2n−kvi

k

∑
r=0

(−1)r
(

k
r

)
= 2n−kvi(1−1)k = 0.

5 There are two cases to consider. First, assume that the lines AD and BC are not parallel and meet at S.
Since ABCD is cyclic,4ASB and4CSD are similar. Then, AE/AB =CF/CD and AE/CF = AB/CD =
AS/CS, so that4ASE and4CSF are also similar (∠SAE = ∠SCD), and therefore, ∠DSE = ∠CSF .
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By similarity, we have
SE
SF

=
SA
SC

=
AB
CD

=
PE
PF

,

which means that SP is the bisector of angle S in 4FSE. This implies that ∠ESP = ∠FSP and hence
∠ASP = ∠BSP, so SP is also the bisector of angle S in 4ASB. This means that P is equidistant from
the lines AD and BC. Thus

[APD]/[BPC] = AD/BD,

which is a constant (we use the notation [ABC] for the area of4ABC).

For the second case, assume that AD and BC are parallel. Then ABCD is an isosceles trapezoid with
AB = CD, and we have BE = DF . Let M and N be the midpoints of AB and CD, respectively. Then
ME = NF and E and F are equidistant from the line MN. Thus P, the midpoint of EF , lies on MN.
Thus P is equidistant from AD and BC, and hence

[APD]/[BPC] = AD/BD.


