Equilateral triangle algorithm?

Not so fast!

Let x be the "error". Thus $\alpha=60+x$, and

After folding, we get

Not so fast!

Fold back, and we get

Thus, our angles are

$$
60+x, 60-\frac{x}{2}, 60+\frac{x}{4}, 60-\frac{x}{8}, \ldots,
$$

Not so fast!

Thus, our angles are

$$
60+x, 60-\frac{x}{2}, 60+\frac{x}{4}, 60-\frac{x}{8}, \ldots,
$$

and the error approaches zero.

Goal: divide a strip of paper into fifths.

Goal: divide a strip of paper into fifths. Key ideas:

Goal: divide a strip of paper into fifths. Key ideas:

- Imperfect guessing is easy.

Goal: divide a strip of paper into fifths. Key ideas:

- Imperfect guessing is easy.
- Bisecting is easy.

First, guess, with an error of x (positive or negative).

First, guess, with an error of x (positive or negative).

Fujimoto folding

Next, bisect the remainder (on the right).

Fujimoto folding

Bisect again.

Notice that the error has been divided by 4 .

Fujimoto folding

Bisect the left twice, and the error is divided by 16 !

Ribbons (Hull, Tanton, Zucker) \quad The arithmetic of folding

The arithmetic of folding

The sequence $R R L L$, repeated, converges to $1 / 5$. What if we wanted to get $1 / 7$?

Claim: the sequence
Ribbons (Hull, Tanton, Zucker) \quad The arithmetic of folding

The arithmetic of folding

Claim: the sequence $R L L$, repeated, does the trick.

The arithmetic of folding

Claim: the sequence $R L L$, repeated, does the trick.
Note that

$$
\frac{1}{8}+\frac{1}{8^{2}}+\frac{1}{8^{3}}+\cdots=\frac{\frac{1}{8}}{1-\frac{1}{8}}=\frac{\frac{1}{8}}{\frac{7}{8}}=\frac{1}{7}
$$

The arithmetic of folding

Claim: the sequence $R L L$, repeated, does the trick.
Note that

$$
\frac{1}{8}+\frac{1}{8^{2}}+\frac{1}{8^{3}}+\cdots=\frac{\frac{1}{8}}{1-\frac{1}{8}}=\frac{\frac{1}{8}}{\frac{7}{8}}=\frac{1}{7}
$$

So, in binary (base 2),

$$
\frac{1}{7}=0.001001001001 \ldots
$$

The arithmetic of folding

Likewise, in binary, we claim that

$$
\frac{1}{5}=0.00110011 \ldots
$$

The arithmetic of folding

Likewise, in binary, we claim that

$$
\frac{1}{5}=0.00110011 \ldots
$$

because

$$
0.0011=\frac{3}{16},
$$

The arithmetic of folding

Likewise, in binary, we claim that

$$
\frac{1}{5}=0.00110011 \ldots
$$

because

$$
0.0011=\frac{3}{16}
$$

and
$0.00110011 \ldots=\frac{3}{16}+\frac{3}{16^{2}}+\cdots=\frac{\frac{3}{16}}{1-\frac{1}{16}}=\frac{\frac{3}{16}}{\frac{15}{16}}=\frac{3}{15}=\frac{1}{5}$.

The arithmetic of folding: in general

Think of the strip of paper as a length on the number line, starting at 0
and ending at 1.

The arithmetic of folding: in general
Think of the strip of paper as a length on the number line, starting at 0
and ending at 1 . Make a pinch at $x=0 . a b c d \ldots$, in binary.

The arithmetic of folding: in general

- The L fold will turn x into $x / 2=0.0$ abcd \ldots.

The arithmetic of folding: in general

- The L fold will turn x into $x / 2=0.0 a b c d \ldots$
- The R fold will turn x into

The arithmetic of folding: in general

- The L fold will turn x into $x / 2=0.0$ abcd \ldots..
- The R fold will turn x into

$$
x+\frac{1}{2}(1-x)=\frac{1}{2}+\frac{x}{2}=0.1 a b c d \ldots .
$$

The arithmetic of folding: in general

In other words, L inserts a 0 into the binary representation of x, and R inserts a 1 .

The arithmetic of folding: in general

In other words, L inserts a 0 into the binary representation of x, and R inserts a 1 . Any sequence of $L s$ and $R \mathrm{~s}$ will converge to whatever that binary number is

The arithmetic of folding: in general

In other words, L inserts a 0 into the binary representation of x, and R inserts a 1 . Any sequence of $L \mathrm{~s}$ and $R \mathrm{~s}$ will converge to whatever that binary number is (replacing L with 0 and R with 1).

The arithmetic of folding: in general

Challenge: Use

$$
\frac{1}{3}=0.010101 \ldots
$$

The arithmetic of folding: in general

Challenge: Use

$$
\frac{1}{3}=0.010101 \ldots,
$$

(in other words, $L R L R L R \ldots$)

The arithmetic of folding: in general

Challenge: Use

$$
\frac{1}{3}=0.010101 \ldots
$$

(in other words, $\operatorname{LRLRLR\ldots \text {...)}}$
and start with an absurd guess (close to 1), to end up with an excellent approximation to $\frac{1}{3}$.
 you get?

Knots and numbers
Tie a neat knot with a straw wrapper or ribbon. What do you get?
A regular PENTAGON!

Knots and numbers
Tie a neat knot with a straw wrapper or ribbon. What do you get?
A regular PENTAGON!

Why do you get it?

Knots and numbers

Angle of incidence equals angle of reflection!

Knots and numbers

Heptagon is theoretically possible!

Knots and numbers

Even octagons are theoretically possible!

Kibbons (Hull, Tanton, Zucker)
Knots and numbers
But not regular polygons, and number theory
triangles!

Reason: Number theory!

```
Ribbons (Hull, Tanton. Zucker)
Knots and numbers
Reason: Number theory!
The Euler phi-function \(\phi(n)\) is the number of positive integers less than or equal to \(n\) that are relatively prime to \(n\).
```

Knots and numbers
Reason: Number theory!
The Euler phi-function $\phi(n)$ is the number of positive integers less than or equal to n that are relatively prime to n.
For example, $\phi(8)=5$, since $1,3,5,7$ are relatively prime to 8 .

```

Knots and numbers

Reason: Number theory!
The Euler phi-function \(\phi(n)\) is the number of positive integers less than or equal to \(n\) that are relatively prime to n.

For example, \(\phi(8)=5\), since \(1,3,5,7\) are relatively prime to 8 .
Modulo 8, the sequence
\[
0,3,6,9 \equiv 1,4,7,10 \equiv 2,5
\]
covers all the residues modulo 8 .
Ribbons (Hull, Tanton, Zucker) \(\quad\) Knots, regular polygons, and number theory

Knots and numbers

If \(n \neq 2,3,4,6\), then \(\phi(n)>2\).
```

Ribbons (Hull, Tanton, Zucker) Knots, regular polygons, and number theory
Knots and numbers
If $n \neq 2,3,4,6$, then $\phi(n)>2$.
So you can always find a "weaving interval"

```

Knots and numbers

If \(n \neq 2,3,4,6\), then \(\phi(n)>2\).
So you can always find a "weaving interval"
But, for example, if \(n=6\), the only numbers relatively
prime to 6 are 1 and 5, and these won't work for
"weaving," since they send you to the adjacent side.```

