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Equilateral triangle algorithm?
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Not so fast!

Let x be the “error”. Thus ↵ = 60 + x , and
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Not so fast!

Thus, our angles are

60 + x , 60� x
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, . . . ,

and the error approaches zero.
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Fujimoto folding

Goal: divide a strip of paper into fifths.

Key ideas:

Imperfect guessing is easy.

Bisecting is easy.
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Fujimoto folding

First, guess, with an error of x (positive or negative).
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Fujimoto folding

Next, bisect the remainder (on the right).
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Fujimoto folding

Bisect again.
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Fujimoto folding

Notice that the error has been divided by 4.
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Fujimoto folding

Bisect the left twice, and the error is divided by 16!
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The arithmetic of folding

The sequence RRLL, repeated, converges to 1/5. What if
we wanted to get 1/7?
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The arithmetic of folding

Claim: the sequence

RLL, repeated, does the trick.
Note that
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.

So, in binary (base 2),

1

7
= 0.001001001001 . . . .
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The arithmetic of folding

Likewise, in binary, we claim that

1

5
= 0.00110011 . . . ,

because

0.0011 =
3

16
,

and

0.00110011 . . . =
3
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The arithmetic of folding: in general

Think of the strip of paper as a length on the number
line, starting at 0
and ending at 1.

Make a pinch at x = 0.abcd . . ., in binary.
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The arithmetic of folding: in general

The L fold will turn x into x/2 = 0.0abcd . . ..

The R fold will turn x into

x +
1

2
(1� x) =

1

2
+

x

2
= 0.1abcd . . . .
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The arithmetic of folding: in general

In other words, L inserts a 0 into the binary representation
of x , and R inserts a 1.

Any sequence of Ls and Rs will
converge to whatever that binary number is (replacing L
with 0 and R with 1).
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The arithmetic of folding: in general

Challenge: Use
1

3
= 0.010101 . . . ,

(in other words, LRLRLR . . .)
and start with an absurd guess (close to 1), to end up
with an excellent approximation to 1

3 .
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Knots and numbers

Tie a neat knot with a straw wrapper or ribbon. What do
you get?

A regular PENTAGON!

Why do you get it?
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Knots and numbers

Angle of incidence equals angle of reflection!
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Knots and numbers

Heptagon is theoretically possible!
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Knots and numbers

Even octagons are theoretically possible!
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Knots and numbers

But not squares or regular hexagons or equilateral
triangles!
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Knots and numbers

Reason: Number theory!

The Euler phi-function �(n) is the number of positive
integers less than or equal to n that are relatively prime to
n.
For example, �(8) = 5, since 1, 3, 5, 7 are relatively prime
to 8.
Modulo 8, the sequence

0, 3, 6, 9 ⌘ 1, 4, 7, 10 ⌘ 2, 5

covers all the residues modulo 8.
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Knots and numbers

If n 6= 2, 3, 4, 6, then �(n) > 2.

So you can always find a “weaving interval”
But, for example, if n = 6, the only numbers relatively
prime to 6 are 1 and 5, and these won’t work for
“weaving,” since they send you to the adjacent side.
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